企业信息

    上海豫淞电子科技有限公司

  • 7
  • 公司认证: 营业执照已认证
  • 企业性质:外资企业
    成立时间:
  • 公司地址: 上海市 闵行区 浦江镇 上海闵行浦江新骏环路115号
  • 姓名: 李先生
  • 认证: 手机未认证 身份证未认证 微信未绑定

    供应分类

    广西无线倾角传感器报价

  • 所属行业:电气 电工仪器仪表 传感器
  • 发布日期:2021-06-25
  • 阅读量:456
  • 价格:面议
  • 产品规格:不限
  • 产品数量:9999.00 个
  • 包装说明:不限
  • 发货地址:上海闵行浦江  
  • 关键词:广西无线倾角传感器报价

    广西无线倾角传感器报价详细内容

    GPRS水文监测 地下水监测 GPRS无线传感器
    地下水监测系统依靠地下水传感器,将采集到的数据,通过GPRS网络传输到监测中心,工作人员可以在监测中心查看地下水的水位、温度、电导率的数据。监测中心的监测管理软件能够实现数据的远程采集、远程监测的所有数据进入数据库,可实现报表或曲线图。
    地下水监测系统主要由:地下水传感器、可编程采集终端、GPRS通讯终端、数据接收监测中心。


    水文监测终端广泛应用于雨量、水位、墒情、地下水、井下水位监测。


    GPRS通讯网络


    西安达泰电子的DTP-S09D设备通过GPRS/GSM网络信号覆盖,具有范围广、通信质量可靠、误码率低、运行稳定、数据传输实时性、安全性和可靠性高、按信息流量计费,使用灵活成本经济。
    系统结构:


    中心具备宽带网络或移动通讯GPRS的*占用网络通道。服务器,操作系统和系统监控软件(可用组态王),不间断存储数据。
    中心监控软件除管理员外,其它工作人员经授权后可在自己的计算机上进行权利范围内的操作。被授权者在任何地方的计算机上都可以通过INTERNET公网访问和操作该系统。
    广西无线倾角传感器报价
    基于倾角传感器的移动通信铁塔形变预警系统
    监测系统设计要点分析
    铁塔形变检测系统是对移动铁塔进行健康监测,需要考虑监测节点的功耗、稳定性、抗恶劣环境等问题,同时需要提高设备的稳定性、易用性。 针对以上需求在系统设计过程中需要针对需求做出针对性的优化。 以下是对铁塔形变监测系统的需求分析:
    (1)低功耗
    通信铁塔形变监测节点需适应在恶劣自然环境下的工作,较低的功耗可以提高铁塔形变监测节点环境适应性,并延长监测节点的使用寿命。特别是对于采用太阳能和锂电池供电方案的监测节点,如果功耗过大,可能导致监测节点在阴雨气候时因为得不到充足的电能而停止工作。
    (2)抗侵袭
    通信铁塔形变监测节点安装地域广, 工作环境的复杂,可能遭受到如雨雪、雷电、大风、冰雹、电磁干扰等恶劣环境的影响。为了提高设备的环境适应性,在该倾角监测节点的设计中, 应考虑该仪表的防雨、防震、防雷击、防电磁干扰等因素。
    (3)高可靠性
    该系统监测节点主要安装在户外的通信铁塔上,维护难度较大。因此铁塔形变监测系统的可靠性是非常重要的。无线倾角传感器需要牢固固定,并且不破坏铁塔的固有结构。 除此之外铁塔形变监测系统软件需要具较高的可靠性,并具有自动检测功能,以方便维护人员及时确定设备的故障点。有高可靠性是铁塔倾角监测系统的根本**,失去了可靠性就等于设备失去了其可信性,失去了铁塔自动监控的意义。
    (4)低成本
    由于通信铁塔形变监测装置将安装在通信铁塔上,配备数量大。如果开发成本过高,势必会在很大程度上影响它的推广应用,通信公司也无法投入大量资金在其中。因此在形变监测节点的开发过程中, 需要尽可能降低监测节点的成本。才能提高该检测系统的普及率。
    (5)易用性
    铁塔形变监测系统需要提供便捷的服务,铁塔数据通过短信的方式将采集的数据信息发送到监控中心的计算机中,方便数据的汇总、比较。当数据出现问题时,通过短信电话等方式通知相关铁塔维护人员进行处理。铁塔数据要简单、直观、可靠便于分析。
    一、倾角传感器原理


    倾角传感器经常用于系统的水平测量,从工作原理上可分为“固体摆”式、“液体摆”式、“气体摆”三种倾角传感器,下面就它们的工作原理进行介绍。


    1、“固体摆”式惯件


    固体摆在设计中广泛采用力平衡式伺服系统,如图1所示,其由摆锤、摆线、支架组成, 摆锤受重力G和摆拉力T的作用,其合外力F为:(1)


    其中,θ为摆线与垂直方向的夹角。在小角度范围内测量时,可以认为F与θ成线性关系。如应变式倾角传感器就基于此原理。


    2、“液体摆”式惯件


    液体摆的结构原理是在玻璃壳体内装有导电液,并有三根铂电极和外部相连接,三根电极相互平行且间距相等,如图2所示。当壳体水平时,电极插入导电液的深度相同。如果在两根电极之间加上幅值相等的交流电压时,电极之间会形成离子电流,两根电极之间的液体相当于两个电阻RI和RIII。若液体摆水平时,则RI=RIII。当玻璃壳体倾斜时,电极间的导电液不相等,三根电极浸入液体的深度也发生变化,但中间电极浸入深度基本保持不变。如图3所示,左边电极浸入深度小,则导电液减少,导电的离子数减少,电阻RI增大,相对较则导电液增加,导电的离子数增加,而使电阻RIII 减少,即RI>RIII。反之,若倾斜方向相反,则RI<RIII。


    在液体摆的应用中也有根据液体位置变化引起应变片的变化,从而引起输出电信号变化而感知倾角的变化。在实用中除此类型外,还有在电解质溶液中留下一气泡,当装置倾斜时气泡会运动使电容发生变化而感应出倾角的“液体摆”。


    3、“气体摆”式惯件


    气体在受热时受到浮升力的作用,如同固体摆和液体摆也具有的敏感质量一样,热气流总是力图保持在铅垂方向上,因此也具有摆的特性。“气体摆”式惯性元件由密闭腔体、气体和热线组成。当腔体所在平面相对水平面倾斜或腔体受到加速度的作用时,热线的阻值发生变化,并且热线阻值的变化是角度q或加速度的函数,因而也具有摆的效应。其中热线阻值的变化是气体与热线之间的能量交换引起的。


    “气体摆”式惯件的敏感机理基于密闭腔体中的能量传递,在密闭腔体中有气体和热线,热线是一的热源。当装置通电时,对气体加热。在热线能量交换中对流是主要形式。


    对流传热的方程为:(2)


    其中:h—热量传递系数(w/m2×k),s—热线表面积(m2),TH—热线温度(K),TA—气体温度(K)。


    热量传递系数h与流体的热传导率、动力学粘度、流体速度和热线直径有关,表示为:(3)


    其中:Nu为—努塞尔(Nusselt)数,l—热传导率(W/mK),Re—雷诺(Reynold)数,U—流体速度(m2/s),D—热线的直径(m),n—流体的动力学粘度。


    当气流以速度U垂直穿过热线时,(4)


    将(4)式代入(3)式得:(5)


    根据热平衡方程可得:


    所以:(6)


    假设和s为常数,则有:(7)


    从式(7)可以看出,当流体的动力学粘度、密度和热传导特性一定时,若热线周围流体的速度不同,则流过热线的电流也不同,从而引起热线两端的电压也产生相应的变化。气体摆式惯件就是根据一原理研制的。


    气体摆式检测器件的核心敏感元件为热线。电流流过热线,热线产生热量,使热线保持一定的温度。热线的温度**它周围气体的温度,动能增加,所以气体向**动。在平衡状态时,如图4(a)所示,热线处于同一水平面上,上升气流穿过它们的速度相同,即V1=V1′,这时,气流对热线的影响相同,由式(7)可知,流过热线的电流也相同,电桥平衡。当密闭腔体倾斜时,热线相对水平面的高度发生了变化,如图4(b)所示,因为密闭腔体中气体的流动是连续的,所以热气流在向上运动的过程中,依次经过下部和上部的热线。若忽略气体上升过程中克服重力的能量损失,则穿过上部热线的气流已经与下部热线的产生热交换,使穿过两根热线时的气流速度不同,这时V2¢>V2,因此流过两根热线的电流也会发生相应的变化,所以电桥失去平衡,输出一个电信号。倾斜角度不同,输出的电信号也不同。


    二、固、液、气体摆性能比较


    就基于固体摆、液体摆及气体摆原理研制的倾角传感器而言,它们各有所长。在重力场中,固体摆的敏感质量是摆锤质量,液体摆的敏感质量是电解液,而气体摆的敏感质量是气体。


    气体是密封腔体内的一运动体,它的质量较小,在大冲击或高过载时产生的惯性力也很小,所以具有较强的抗振动或冲击能力。但气体运动控制较为复杂,影响其运动的因素较多,其精度无法达到*武器系统的要求。


    固体摆倾角传感器有明确的摆长和摆心,其机理基本上与加速度传感器相同。在实用中产品类型较多如电磁摆式,其产品测量范围、精度及抗过载能力较高,在武器系统中应用也较为广泛。


    液体摆倾角传感器介于两者之间,但系统稳定,在高精度系统中,应用较为广泛,且国内外产品多为此类。
    广西无线倾角传感器报价
    基于倾角传感器的移动通信铁塔形变预警系统
    监测需求分析
    3G、 4G 网络的大面积覆盖为人们提供了更为优质的通信服务, 为人们带来了较大的便利,而与此同时通信网络扩张所产生的问题也伴随而来。通信设备数量的增加,导致维护难度逐渐增大。维护不及时致使通信设备在遭受自然环境或人为因素的破坏后,得不到及时的修理,导致通信线路塔体发生倾斜、形变甚至倒塌,通信铁塔一旦倒塌将导致覆盖区域内通信中断,直接影响了通信网络的运行安全。近年来通信铁塔倒塌的事故日渐增多,严重影响了人们的日常生活。
    针对通信铁塔维护大多采用铅垂仪等人工方式进行简单检测,检查铁塔是否存在表面物理损坏,如铁塔倾斜、钢结构生锈或变形、螺丝松动、螺帽丢失等,粗浅层面的铁塔维护。工程师利用这些表面物理现象,简单判断铁塔的工作状态是否正常,这样不但效率低,而且并不能实施监测铁塔状态,做到铁塔倾斜的早期预测,并及时排除可能存在的安全隐患,以保证通信基站的正常运行。监测人员的不足以及检测手段的落后,导致往往出现较为严重的问题后,才进行事后补救处理。而铁塔倾斜造成的后果是非常严重的,会大大降低铁塔的使用年限,增加使用成本,严重的会造成局部的通信中断,因此,通信铁塔的维护方式急需进行改进。

    智能传感器是 20 世纪 80 年代发展起来的一种新型传感器,融合了信息采集、处理、和交换的功能。由智能传感器组成的无线传感器网络,集无线通讯技术、传感器技术、计算机网络技术等于一体,作为近年来一项新兴的技术,给我们的生活方式带来革命性的变化。结合当下的技术发展,利用无线传感技术设计一种智能化的通信铁塔形变监测系统具有重要的现实意义。
    (1) 积累大量珍贵数据。通信铁塔形变监测预警节点,可以及时发现铁塔的倾斜和变形特点,并找出其垂直度的变化规律,提早预见存在故障的铁塔,使人为或自然现象导致的地面塌陷、铁塔倾斜、铁塔形变在早期就处于严密监控下。大量有效数据的积累为后期铁塔形变预警积累了宝贵的数据、经验,促使铁塔监测更为科学有效。
    (2) 减少巡视人员劳动强度。依照长期实时的监测数据,铁塔维护人员可以有目的对铁塔进行监测维护,缩小检测范围。并根据数据提前分析可能存在的问题,做到提前准备。
    (3) 提高通讯网络的可靠性。传统的移动铁塔检测方法难以发现存在潜在问题的铁塔,常常是在铁塔倒塌后再进行补救,对通信网络的可靠性造成了严重的损害。铁塔形变监测系统,以监测为核心,当铁塔发生形变趋势的时候及早排查,大大降低了铁塔倒塌的可能。
    (4) 创造良好的社会效益。铁塔形变监测系统不仅可以应用于移动通信网络铁塔的监测预警,也可用于对电网铁塔、景观铁塔等设备的监测中,提高铁塔使用寿命,节省成本。


    本文的目标是构建移动通信铁塔形变监测预警系统,通过在铁塔较容易形变的地方,放置垂直度传感器对铁塔形变进行实时监测,并将采集到的数据进行计算、分析,实时监控通信铁塔的工作状态,及时发现铁塔存在的安全隐患。系统还将铁塔工作状态数据和形变预警信号,传递至铁塔监控中心,方便相关人员进行实时监测、统计、分析,并以报警器、短信、电话等方式告知运维人员,从而实现精细化、预防性、综合集中控管的智能铁塔维护。
    无线传感网络与无线传感器网络?
    物联网架构可分为三层:感知层、网络层、应用层。感知层是由各种传感器构成,是物联网识别物体、采集信息的来源。网络层是负责传递和处理感知层获取的信息。应用层是物联网与用户的接口,它需要与行业需求结合,从而实现物联网的智能应用。作为物联网较底层,感知层肩负起很重要的作用,数据要先经过感知层的采集和识别然后才能进行接下来的处理与传输等操作。因此,传感网建立的重要性是十分重大的。

    随着传感网的不断发展,以ZigBee协议为基础的无线传感网络(WSN,WirelessSenorNetwork)的确立,不仅使得在信息采集技术的这一领域有了进一步的发展,而且还带动了物联网的快速发展。本文立足于无线传感网络作为物联网的较底层,分析了基于ZigBee的无线传感网络,并在此基础上提出了无线传感网络接入到互联网的网关接入模式。


    2、相关技术问题分析


    2.1ZigBee协议栈与无线传感网络的技术要点

    无线传感网络(WirelessSensorNetworks,WSN)是一种技术集成度高,涉及多种*科学技术的信息采集变换,组网传送,融合处理,反馈调节的多信息综合采集与组网应用系统。在当前的国际信息产业界和技术研究领域里都受到广泛关注。无线传感网络由多个静止或移动的传感器以自组织和多跳的方式构成的无线网络,以协作地感知、采集、处理和传输网络覆盖地理区域内被感知对象的信息,并较终把这些信息发送给网络所有者。无线传感络并不需要较高的带宽,但是需要较低的传输延时和较低的功率消耗并且可以使用户拥有较长的电池寿命和较多的器件阵列。而ZigBee的出现正好解决了这一问题,ZigBee有着高通信效率、低复杂度、低功耗、低速率、低成本、高安全性以及全数字化等诸多优点。这些优点使得ZigBee与无线传感网络**的结合在一起。以下将对ZigBee协议栈加以说明。


    ZigBee协议栈结构由一些层构成,每个层都有一套特定的服务方法(协议)和上一层连接。数据实体(dataentity)提供数据的传输服务,而管理实体(managemententity)提供所有的服务类型。每个层的服务实体通过服务接入点(SAP,serviceaccesspoint)和上一层相接,每个SAP提供大量服务方法来完成相应的操作。ZigBee协议栈基于标准的OSI七层模型,但只是在相关范围来定义一些相应层来完成特定的任务。IEEE802.15.4-2003标准定义了下面的两个层:物理层(PHY层)和媒介层(MAC层)。ZigBee联盟在此基础上建立了网络层(NWK层)以及应用层(APL层)的框架(framework)。APL层又包括应用支持子层(APS,applicationsupportsub-layer),ZigBee的设备对象(ZDO,zigbeedeviceobject)以及制造商定义的应用对象。
    IEEE802.15.4标准定义了物理层(PHY层)和媒介层(MAC层)。物理层是协议的较底层,承担着与外界直接作用的任务,它采用扩频通信调制方式,由图1可以看到这里定义了两个频率的物理层,这两个频率段分别为868/915MHz和2.4GHz。MAC层负责设备间无线数据链路的建立、维护和结束,确认模式的数据传送和接收,可选时隙,实现低延迟传输,支持各种网络拓扑结构,网络中每个设备为16位地址寻址。它可完成对无线物理信道的接入过程管理,包括以下几方面:网络协调器(coordinator)产生网络信标、网络中设备与网络信标同步、完成PAN的入网和脱离网络过程、网络安全控制、利用CSMA-CA机制进行信道接入控制、处理和维持GTS(GuaranteedTimeSlot)机制、在两个对等的MAC实体间提供可靠的链路连接。


    ZigBee又在以上两层的基础上提出了网络层和应用层。网络层主要负责建立新的网络、处理节点的进入和离开网络、根据网络类型设置节点的协议堆栈、使网络协调器对节点分配地址、保证节点之间的同步、提供网络的路由。网络层确保MAC子层的正确操作,并为应用层提供合适的服务接口。为了给应用层提供合适的接口,网络层用数据服务和管理服务这两个服务实体来提供必需的功能。网络层数据实体(NLDE)通过相关的服务接入点(SAP)来提供数据传输服务,即NLDE.SAP;网络层管理实体(NLME)通过相关的服务接入点(SAP)来提供管理服务,即NLME.SAP。NLME利用NLDE来完成一些管理任务和维护管理对象的数据库,通常称作网络信息库(NetworkInformationBase,NIB)。应用层主要根据具体应用由用户开发。它维持器件的功能属性,发现该器件工作空间中其他器件的工作,并根据服务和需求在多个器件之间进行通信。应用层由应用支持子层(APS)、设备对象(ZDO,包括ZDO管理平台)以及制造商定义的应用设备对象组成。APS子层的作用包括维护绑定表(绑定表的作用是基于两个设备的服务和需要把它们绑定在一起)、在绑定设备间传输信息。ZDO的作用包括在网络中定义一个设备的作用(如定义设备为协调者或为路由器或为终端设备)、发现网络中的设备并确定它们能提供何种服务、起始或回应绑定需求以及在网络设备中建立一个安全的连接。


    2.2TCP/IP协议与互联网络通信方式


    对于互联网而言,其传输控制与因特网互联规则也就是TCP/IP协议是Internet较基本的协议。它由网络层的IP协议和传输层的TCP协议组成,此协议采用了四层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。可以这样说,TCP负责发现传输的问题,一旦发现有问题就会要求重新传输,直到所有的数据安全正确的传输到目的地,而IP是给了因特网的每一台电脑规定了一个地址。


    TCP/IP协议由链路层、网络层、传输层以及应用层这四层组成。对于此协议的熟知程度,具体的每层协议的功能在这里将不进行详细的说明。而网关作为在传输层以上工作的,为了深入的了解此文所提出来的网关接入模式,在此将对传输层以上进行一些分析说明。传输层提供应用程序之间的通信。其功能包括:格式化信息流和提供可靠传输,为实现后者,传输层协议规定接收端必须发回确认,并且假如分组丢失,必须重新发送,从而提供可靠的数据传输。而传输层的协议主要是:TCP和UDP协议。在本文所提出的的网络传输由于速率因素,我们在此采用TCP传输。在TCP传输过程中,数据从应用层到传输层,数据的报头是TCP报头,然后下到网络层,数据在之前的TCP报头前在加上IP报头,IP报头中有目标IP和源IP,然后到数据链路层后又在上层的数据中加上首部和尾部,然后经过物理层传输到目的地,经过路由器分析目标IP然后查找路由表在进行转发,来到目标计算机然后从物理层开始解封装,然后一层一层向上传输。而在此文中所涉及到的传输过程,就从应用层到传输层,数据带有TCP报头就进入网关进行协议的转换,解封装后从新封装从而传到ZigBee的应用层。


    3、无线传感网络接入互联网络的网关模式分析


    本文所提出的无线传感网络接入Internet网的网关接入模式的基本构架如图2所示。


    在此基本结构模式中,我们主要对数据从ZigBee进入网关以及数据从网关到互联网进行分析。在此,数据由ZigBee进入网关采用串行传输的通信方式。ZigBee各个节点把收集的数据送到协调器,在经由协调器交给应用层,应用层通过调用串口API发到网关。网关将Internet发送来的数据进行解封装通过串口交给协调器,协调器再将数据封装,加上ZigBee的短地址发送出去。这样就实现了从ZigBee到网关的双向数据传输。网关到互联网的传输在此文中采用了以太网口传输,客户端与服务器模式的网络通信结构,并用WindowsSocket网络编程实现,这样就完成了从网关到互联网的数据传输。因此,在这里我们通过此网关把基于ZigBee的无线传感网络与互联网连接起来,从而使得可以通过互联网时时控制物理世界,可以根据我们的需要对所有的节点进行控制及管理。
    3.1ZigBee模块与互联网关的通信模式


    对于星形的ZigBee网络拓扑结构,所有的节点都跟协调器交互,因此要实现ZigBee网络与网关的通信,可以通过协调器跟网关通信。在本文中采用了协调器与网关通过串口进行连接。串口通信具有成本低、传输质量可靠、全双工等特点,满足嵌入式简化设备的需求,因此网关的ZigBee网络通信模块采用串口实现。


    在协调器和网关之间我们采用异步串口通信方式,并且双方采用中断方式进行数据的发送和接收。由发送端向接收端发送请求是否可以发送数据命令,之后接收端收到请求命令后给发送端返回一个命令数据,发送端根据接收端发回的命令进行判断是否可以现在就开始传输数据。在每一次数据传输完毕之后,发送端都要进行新一轮的上述过程进行下一个数据包的传输,知道所有的数据传输完毕即可。


    ZigBee协调器接收到其他节点发来的数据之后,就会产生一个事件,告知应用层,应用层调用相关函数进行接收,该函数返回一个类型的结构体。该结构体包括了源地址、网络地址、地址类型等相关信息。这样,在传输过程采用中断方式,当接收到一个字节后就会进入中断,从而调用接收函数进行所有数据的接收工作。而当网关接收到因特网传来的数据之后就按照所需数据的格式进行打包,保存在事先设置好的变量里。当检测到此变量非空的时候,就会跟协调器交互后发送数据。当协调器中的任务检测到有数据来的时候,就会和协调器交互后以判断对方是否真的要发送数据,然后就进行数据的接收。这样就简单的完成了协调器和网关之间的通信,完成了数据的交换,实现了从ZigBee的无线传感器网络到网关的通信。


    3.2物联网与Internet的网关接入方式


    本研究报告主要采用以太网口,客户端与服务器结构的网络通信,并把网关作为服务器。采用WindowsSocket编程来实现此网络传输。在此我们使用套接字I/O模型的Select模型,这样有利于对应用程序通过异步方式同时对一个或多个套接字通信加以管理。如图3所示,描述了Select模型的工作方式。在调用recv()函数接收数据之前,先调用select()函数,如果此时没有可读数据,select()函数就先阻塞在这里。当系统有了可读数据,该函数返回。这个时候应用程序就可以调用recv()函数接收数据了。网络编程选择好后就在下面具体分析客户端与服务器的相连接。
    3.1ZigBee模块与互联网关的通信模式


    对于星形的ZigBee网络拓扑结构,所有的节点都跟协调器交互,因此要实现ZigBee网络与网关的通信,可以通过协调器跟网关通信。在本文中采用了协调器与网关通过串口进行连接。串口通信具有成本低、传输质量可靠、全双工等特点,满足嵌入式简化设备的需求,因此网关的ZigBee网络通信模块采用串口实现。


    在协调器和网关之间我们采用异步串口通信方式,并且双方采用中断方式进行数据的发送和接收。由发送端向接收端发送请求是否可以发送数据命令,之后接收端收到请求命令后给发送端返回一个命令数据,发送端根据接收端发回的命令进行判断是否可以现在就开始传输数据。在每一次数据传输完毕之后,发送端都要进行新一轮的上述过程进行下一个数据包的传输,知道所有的数据传输完毕即可。


    ZigBee协调器接收到其他节点发来的数据之后,就会产生一个事件,告知应用层,应用层调用相关函数进行接收,该函数返回一个类型的结构体。该结构体包括了源地址、网络地址、地址类型等相关信息。这样,在传输过程采用中断方式,当接收到一个字节后就会进入中断,从而调用接收函数进行所有数据的接收工作。而当网关接收到因特网传来的数据之后就按照所需数据的格式进行打包,保存在事先设置好的变量里。当检测到此变量非空的时候,就会跟协调器交互后发送数据。当协调器中的任务检测到有数据来的时候,就会和协调器交互后以判断对方是否真的要发送数据,然后就进行数据的接收。这样就简单的完成了协调器和网关之间的通信,完成了数据的交换,实现了从ZigBee的无线传感器网络到网关的通信。


    3.2物联网与Internet的网关接入方式


    本研究报告主要采用以太网口,客户端与服务器结构的网络通信,并把网关作为服务器。采用WindowsSocket编程来实现此网络传输。在此我们使用套接字I/O模型的Select模型,这样有利于对应用程序通过异步方式同时对一个或多个套接字通信加以管理。如图3所示,描述了Select模型的工作方式。在调用recv()函数接收数据之前,先调用select()函数,如果此时没有可读数据,select()函数就先阻塞在这里。当系统有了可读数据,该函数返回。这个时候应用程序就可以调用recv()函数接收数据了。网络编程选择好后就在下面具体分析客户端与服务器的相连接。
    首先要初始化套接字集合,然后将套接字分配给参与操作的套接字集合之后通过调用select函数等待函数的返回,若成功返回后则对每个套接字集合进行检查,若是宏值为ture则说明此套接字可读,较后就可以通过SocketAPI进行数据接收和发送。接下来分析下网关(服务器)上应用流程。Select函数监听套接字是否在可读集合中,若存在,则说明客户端有连接请求,调用accept()函数接受该客户端的请求,并将新建接受套接字加入服务器套接字集合然后便利服务器套接字集合分别判断每个套接字是否可读可写。若可读,则调用输入函数读入数据,若可写,则调用输出函数发送数据。对于客户端,首先要判断是否可写套接字,若是存在就调用connect()函数请求连接,之后检查每一个套接字的可读可写性。若可读,则调用输入函数读入数据,若可写,则调用输出函数发送数据。这样就在服务器客户端两端分别完成了数据的传输,用此模式的网络编程实现了网关与PC的有效数据传输。也就是实现了网关到Internet的传输。通过此网关可以实现ZigBee无线传感器网络与因特网的互联,实现物联网系统在更广泛领域里的拓展应用。
    基于倾角传感器的移动通信铁塔形变预警系统
    系统设计目标
    基于物联网技术的思路,设计、开发一套移动通信铁塔形变监测系统,实时监控通信铁塔的工作状态,及时发现铁塔存在的安全隐患,实现对铁塔实时、预防性和量化的维护。采用传感器采集铁塔的各项数据,同时将现场的监测数据传送到监控中心,并通过短信将存在问题的铁塔及相关数据发送给对应的维护人员,方便维护人员有重点的进行铁塔维修、维护。具体的建设目标有以下几点:
    (1) 移动通信铁塔形变监测预警系统能够 24 小时实时监控铁塔状态信息。这对监控单元供电设计提出较高要求,需要监控单元能够长时间有效工作,功耗尽可能降低;
    (2) 监控单元在极限高温和低温下能正常使用。由于在某些地区,通信铁塔所处区域会出现-40℃或 85℃的恶劣气候。因此,要求监控单元的工作温度范围为-40℃~85℃;
    (3)监控单元能够高灵敏度的监测铁塔垂直度的变化,可根据对数据积累、分析,修改铁塔形变报警的各项标准。
    (4) 如铁塔出现形变,以短信形式通知维护人员,短信内容简单明确,铁塔倾角数据易查询,方便维护人员快速找到形变铁塔问题所在。

    -/gjjici/-

    http://yustech.b2b168.com
    欢迎来到上海豫淞电子科技有限公司网站, 具体地址是上海市闵行区浦江镇上海闵行浦江新骏环路115号,联系人是李先生。 主要经营上海豫淞电子科技有限公司是一家致力于工业物联网系统解决方案的供应商,为客户提供智能传感器、无线风速传感器、无线加速度传感器、无线倾角传感器、无线位移传感器、无线应变传感器、无线振动传感器等产品。欢迎来电咨询!。 单位注册资金单位注册资金人民币 100 万元以下。 价格战,是很多行业都有过的恶性竞争,不少厂家为了在价格战役中获胜,不惜以牺牲产品质量为代价,而我们公司坚决杜绝价格战,坚持用优质的原材料及先进的技术确保产品质量,确保消费者的合法利益。